The Roles of P2Y2 Purinergic Receptors in Osteoblasts and Mechanotransduction
نویسندگان
چکیده
We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow), and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice.
منابع مشابه
Activation of Extracellular-signal Regulated Kinase (ERK1/2) by Fluid Shear is Ca<sup>2+</sup>- and ATP-dependent in MC3T3-E1 Osteoblasts
To determine the role of Ca signaling in activation of the Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 pre-osteoblastic cells to inhibitors of Ca signaling during application of fluid shear stress (FSS). FSS only activated ERK1/2, rapidly inducing phosphorylation within 5 minutes of the onset of shear. Phosphorylation of ERK1/2 (pERK1/2) was significantly reduced when...
متن کاملExpression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells.
We investigated the use of purinergic receptors as a new treatment modality for nonmelanoma skin cancers. Purinergic receptors, which bind adenosine 5'-tri-phosphate, are expressed on human cutaneous keratinocytes. Previous work in rat and human epidermis suggested functional roles for purinergic receptors in the regulation of proliferation, differentiation, and apoptosis. Immunohistochemical a...
متن کاملPurinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes.
We investigated the expression of P2X5, P2X7, P2Y1 and P2Y2 receptor subtypes in normal human epidermis and in relation to markers of proliferation (PCNA and Ki-67), keratinocyte differentiation (cytokeratin K10 and involucrin) and markers of apoptosis (TUNEL and anticaspase-3). Using immunohistochemistry, we showed that each of the four receptors was expressed in a spatially distinct zone of t...
متن کاملAlterations in purinoceptor expression in human long saphenous vein during varicose disease.
OBJECTIVES Varicose veins are dilated tortuous veins of varying tone. Purinergic signalling is important in the control of tone and in mediating trophic changes in blood vessels. The expression of P2 receptors in control and varicose veins will be examined. METHODS Purinergic signalling in circular and longitudinal smooth muscle of the human long saphenous vein was studied in control and vari...
متن کاملP2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation.
Extracellular nucleotides interact with purinergic receptors, which regulate ion transport in a variety of epithelia. With the use of two different human epithelial carcinoma cell lines (HCT8 and Caco-2), we have shown by RT-PCR that the cells express mRNA for P2X1, P2X3, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12 receptors. Protein expression for P2Y1 and P2Y2 receptors w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014